mqr.plot.anova.
model_means#
- mqr.plot.anova.model_means(result, response, factors, axs, ci_kws=None)#
Plot the means of each combination of factor levels in an ANOVA result.
- Parameters:
- resultstatsmodels.regression.linear_model.RegressionResults
Result of calling fit on a statsmodel linear regression model.
- responsestr
Name of response variable.
- factorslist[str]
List of names of categorical factors.
- axsarray_like[matplotlib.axes.Axes]
Axes for the plot. Must have the same number of elements as factors. Will be flattened before use.
- ci_kws: dict, optional
Keyword args for confidence intervals. Passed to
matplotlib..errorbar
.
Examples
This example performs an ANOVA on sample data, then shows the means of the factors.
from statsmodels.formula.api import ols data = pd.read_csv(mqr.sample_data('anova-glue.csv'), index_col='Run') model = ols('adhesion_force ~ C(primer) + C(glue)', data=data) result = model.fit() fig, axs = plt.subplots(1, 2, figsize=(4, 2), layout='constrained') mqr.plot.tools.sharey(fig, axs) mqr.plot.anova.model_means( result, response='adhesion_force', factors=['primer', 'glue'], axs=axs)
(
Source code
,png
,pdf
)