mqr.inference.power.
TestPower#
- class mqr.inference.power.TestPower(name: str, alpha: float64, beta: float64, effect: float64, alternative: str, method: str, sample_size: int)#
Result of a sample size calculation for an hypothesis test.
- Attributes:
- namestr
Description of the hypothesis test.
- alphafloat
Required significance level.
- betafloat
Complement of the required power: 1 - power.
- effectfloat
Required effect size of the test.
- alternative{‘two-sided’, ‘less’, ‘greater’}
Sense of the test alternative.
- methodstr
Name of the hypothesis test method, if applicable. For example, ‘t-test’.
- sample_sizeint
Lower bound on the sample size to achieve the above parameters.
Examples
Calculations solving for power or sample size produce types like this.
>>> mqr.inference.power.TestPower( >>> name="PowerName", >>> alpha=0.01, >>> beta=0.10, >>> effect=1.5, >>> alternative="greater", >>> method="TestMethod", >>> sample_size=45) TestPower( name='PowerName', alpha=0.05, beta=0.1, effect=1.5, alternative='greater', method='TestMethod', sample_size=45)
In jupyter notebooks, power calculations are rendered as an HTML table:
Test PowerPowerNamealpha
0.05
beta
0.1
effect
1.5
alternative
greater
method
TestMethod
sample size
45