mqr.process.

Sample#

class mqr.process.Sample(data, conf=0.95, ddof=1, name=None, num_display_fmt='#.5g')#

Data and descriptive statistics for a single sample from a process.

Construct using a pandas Series (ie. a column from a dataframe). Intended for use by a Study object.

Attributes:
namestr

Name of the KPI or measurement.

conffloat

Confidence level to use in confidence intervals.

datapd.Series

Sample measurements.

ad_statfloat

Anderson-Darling normality test statistic.

ad_pvaluefloat

p-value associated with ad_stat.

ks_statfloat

Kolmogorov-Smirnov goodness of fit (with normal) test statistic.

ks_pvaluefloat

p-value associated with ks_stat.

nobsint

Number of measurements in the sample.

meanfloat

Sample mean.

semfloat

Standard error of mean.

stdfloat

Sample standard deviation.

varfloat

Sample variance.

skewnessfloat

Skewness.

kurtosisfloat

Kurtosis.

minimumfloat

Smallest observation.

quartile1float

25th percentile observation.

medianfloat

Median observation.

quartile3float

75th percentile obsevation.

maximumfloat

Largest observation.

iqrfloat

Inter-quartile range.

conf_meanConfidenceInterval

Conf interval on the mean.

conf_varConfidenceInterval

Conf interval on the variance.

conf_quartile1ConfidenceInterval

Conf interval on the 25th percentile.

conf_medianConfidenceInterval

Conf interval on the median.

conf_quartile3ConfidenceInterval

Conf interval on the 75th percentile.

outliersarray_like

List of points falling further from a quartile than 1.5 * iqr.

Examples

In a jupyter notebook, sample summaries are shown as HTML tables:

>>> data = pd.read_csv(mqr.sample_data('study-random-5x5.csv'))
>>> mqr.process.Sample(data['KPI1'])

produces

KPI1

Normality (Anderson-Darling).

Stat

0.34261

P-value

0.48588

N

120

Mean

149.97

StdDev

1.1734

Variance

1.3768

Skewness

0.23653

Kurtosis

0.34012

Minimum

147.03

1st Quartile

149.22

Median

149.97

3rd Quartile

150.56

Maximum

153.27

N Outliers.

5