mqr.process.

Summary#

class mqr.process.Summary(data, specs=None, conf=0.95, ddof=1)#

Measurements and summary statistics for a set of samples from a process.

Attributes:
datapd.DataFrame

Measurements with KPIs in each column, and possibly other columns like run lables, operator IDs, etc.

samplesdict[str, mqr.process.Sample]

Automatically constructed. Dict of mqr.process.Sample for each sample in data.

capabilitiesdict[str, Capability]

Automatically constructed when initialised with Specification`s. Dict of `mqr.process.Capability for each sample in data.

Examples

Construct this object using a dataframe of measurements, optionally providing a list of columns to include:

>>> data = pd.read_csv(mqr.sample_data('study-random-5x5.csv'))
>>> mqr.process.Study(data)

That input is shown in notebooks as an HTML table:

KPI1

KPI2

KPI3

KPO1

KPO2

Normality (Anderson-Darling)

Stat

0.34261

0.23796

1.1874

0.19203

0.70213

P-value

0.48588

0.77835

0.0040775

0.89417

0.065144

N

120

120

120

120

120

Mean

149.97

20.003

14.004

160.05

4.0189

StdDev

1.1734

0.24527

0.75643

2.0489

1.5634

Variance

1.3768

0.060156

0.57219

4.1979

2.4443

Skewness

0.23653

-0.31780

-0.63437

-0.12064

0.087295

Kurtosis

0.34012

-0.032159

0.37947

-0.16908

-0.18817

Minimum

147.03

19.234

11.639

154.89

-0.37247

1st Quartile

149.22

19.833

13.642

158.87

2.9019

Median

149.97

20.012

14.033

160.02

3.9264

3rd Quartile

150.56

20.173

14.481

161.35

5.2160

Maximum

153.27

20.505

15.460

164.51

8.2828

N Outliers

5

1

4

1

0