Summary#
- class mqr.process.Summary(data, specs=None, conf=0.95, ddof=1)#
Measurements and summary statistics for a set of samples from a process.
- Attributes:
- datapd.DataFrame
Measurements with KPIs in each column, and possibly other columns like run lables, operator IDs, etc.
- samplesdict[str, mqr.process.Sample]
Automatically constructed. Dict of mqr.process.Sample for each sample in data.
- capabilitiesdict[str, Capability]
Automatically constructed when initialised with Specification`s. Dict of `mqr.process.Capability for each sample in data.
Examples
Construct this object using a dataframe of measurements, optionally providing a list of columns to include:
>>> data = pd.read_csv(mqr.sample_data('study-random-5x5.csv')) >>> mqr.process.Study(data)
That input is shown in notebooks as an HTML table:
KPI1
KPI2
KPI3
KPO1
KPO2
Normality (Anderson-Darling)
Stat
0.34261
0.23796
1.1874
0.19203
0.70213
P-value
0.48588
0.77835
0.0040775
0.89417
0.065144
N
120
120
120
120
120
Mean
149.97
20.003
14.004
160.05
4.0189
StdDev
1.1734
0.24527
0.75643
2.0489
1.5634
Variance
1.3768
0.060156
0.57219
4.1979
2.4443
Skewness
0.23653
-0.31780
-0.63437
-0.12064
0.087295
Kurtosis
0.34012
-0.032159
0.37947
-0.16908
-0.18817
Minimum
147.03
19.234
11.639
154.89
-0.37247
1st Quartile
149.22
19.833
13.642
158.87
2.9019
Median
149.97
20.012
14.033
160.02
3.9264
3rd Quartile
150.56
20.173
14.481
161.35
5.2160
Maximum
153.27
20.505
15.460
164.51
8.2828
N Outliers
5
1
4
1
0